• 更快的响应速度:EMB系统使用电子传感器和执行器来控制制动,与传统的液压制动系统相比,可以提供更快的响应速度。这有助于减少制动距离,提高行车安全。

  • 更精确的制动力控制:通过电子控制,EMB能够精确地调节每个车轮的制动力。这种精确控制有助于提高车辆的稳定性和操控性,尤其是在不同的路面条件和车辆负载下。

 

EMB控制逻辑简图

  • 能量回收:在电动汽车和混合动力汽车中,EMB系统可以在制动时回收能量,将其转换为电能存储起来,从而提高能源效率,延长续航里程。

  • 减少维护需求:由于EMB系统减少了传统液压制动系统中的许多机械部件,如液压管路和密封件,因此其维护需求较低,降低了维护成本。

  • 支持自动驾驶技术:随着自动驾驶技术的发展,EMB系统更容易与自动驾驶系统集成,提供更精确的车辆控制,提高整体的安全性能。

  • 环境友好:EMB系统减少了制动液的使用,从而降低了环境污染的风险。这对于推动汽车行业的可持续发展具有重要意义。

 

环境友好-无制动液

  • 提高车辆性能:通过更快的响应速度和更精确的制动力控制,EMB有助于提高车辆的动态性能,为驾驶者提供更佳的驾驶体验。

总的来说,电子机械制动(EMB)是现代汽车技术中的一个重要创新,它不仅提高了行车安全性,还支持了电动汽车和自动驾驶技术的发展,有助于实现更环保、更高效的汽车未来。随着技术的进步和成本的降低,预计EMB将在未来的汽车中得到更广泛的应用。
 

#02  
EMB系统的构成

电子机械制动(EMB)系统的工作原理涉及多个关键组成部分,其中最重要的是电子控制单元(ECU)。各关键组件协同工作,以实现高效、安全和精确的制动。以下是这些组件如何协同工作的概述:
 

EMB系统简图

  • 传感器监测:

    当驾驶员踩下制动踏板时,传感器开始工作。它们监测车速、加速度、转向角度和车轮转速等关键参数。这些数据实时传输到电子控制单元(ECU),为ECU提供车辆当前状态的准确信息。

  • 电子控制单元(ECU)决策:

    ECU接收来自传感器的数据,并基于这些数据以及其他因素(如车辆重量、路面状况和驾驶模式)来计算所需的制动力。ECU还负责调整制动力分配,确保车辆在制动时保持稳定,特别是在紧急制动或曲线行驶时。

  • 制动执行器执行:
    一旦ECU计算出所需的制动力,它就会指令制动执行器提供相应的助力。制动执行器迅速响应,提供精确的助力力度,帮助驾驶员轻松实现所需的制动效果。制动执行器根据ECU的指令,通过机械方式(滚珠丝杠、钢珠斜盘等)来控制制动器的开启和关闭,从而施加制动力。由于制动执行器直接作用于制动器,因此响应速度快,且不需要液压系统,减少了泄漏和维护的问题。

 

示意图

简单解释为,EMB系统由EMB控制器和EMB执行器两部分组成,其中,EMB执行器包括驱动电机、减速增转矩装置和运动转换机构3个部分;而EMB控制器作用是控制电机的转动,运动转换机构作用是将旋转运动转变为平移运动,使经过减速增转矩装置的力矩转换成推动制动盘垫片的压紧制动力,从而达到制动的效果。